
Enhancing Privacy through Negative Representations of Data∗

Fernando Esponda, Stephanie Forrest and Paul Helman
Department of Computer Science

University of New Mexico
Albuquerque, NM 87131-1386

{fesponda,forrest,helman}@cs.unm.edu

Abstract

The paper introduces the concept of a negative database, in which a set of records DB is represented by
its complement set. That is, all the records not in DB are represented, and DB itself is not explicitly
stored. After introducing the concept, several results are given regarding the feasibility of such a scheme
and its potential for enhancing privacy. It is shown that a database consisting of n, l-bit records can
be represented negatively using only O(ln) records. It is also shown that membership queries for DB
can be processed against the negative representation in time no worse than linear in its size and that
reconstructing the database DB represented by a negative database NDB given as input is an NP-hard
problem when time complexity is measured as a function of the size of NDB.

1 Introduction

Large collections of data are ubiquitous, and the demands that will be placed on these collections in the
near future are increasing. We expect them to be available when we need them; we expect them not to
be available to malicious parties; the contents of the collections and the rules for accessing them must be
continually updated; we would like to be able to search them in new ways, drawing inferences about large-
scale patterns and trends; we want to be protected from the wrong kinds of inferences being made (as in
racial profiling); and, eventually, we will want the ability to audit the uses to which our personal data are
put. Although many of these problems are old, they must now be solved more quickly for larger and more
dynamic collections of data.

In this paper we introduce an approach to representing data that addresses some of these issues. In
our approach, the negative image of a set of data records is represented rather than the records themselves
(Figure 2). Initially, we assume a universe U of finite-length records (or strings), all of the same length l,
and defined over a binary alphabet. We logically divide the space of possible strings into two disjoint sets:
DB representing the set positive records (holding the information of interest), and U −DB denoting the set
of all strings not in DB. We assume that DB is uncompressed (each record is represented explicitly), but
we allow U −DB to be stored in a compressed form called NDB. We refer to DB as the positive database
and NDB as the negative database.

From a logical point of view, either representation will suffice to answer questions regarding DB. However,
the different representations may present different advantages. For instance, in a positive database, inspection
of a single record provides meaningful information. However, inspection of a single (negative) record reveals
little meaningful information about the contents of the original database. Because the positive tuples are
never stored explicitly, a negative database would be much more difficult to misuse. Similarly, depending on
the representation for NDB, the efficiency of certain kinds of queries may be significantly different than the
efficiency of the same query under DB.

∗University of New Mexico Technical Report.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Enhancing Privacy through Negative Representations of Data

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of New Mexico,Computer Science Department
,Albuquerque,NM,87131

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The paper introduces the concept of a negative database, in which a set of records DB is represented by its
complement set. That is, all the records not in DB are represented, and DB itself is not explicitly stored.
After introducing the concept, several results are given regarding the feasibility of such a scheme and its
potential for enhancing privacy. It is shown that a database consisting of n, l-bit records can be represented
negatively using only O(ln) records. It is also shown that membership queries for DB can be processed
against the negative representation in time no worse than linear in its size and that reconstructing the
database DB represented by a negative database NDB given as input is an NP-hard problem when time
complexity is measured as a function of the size of NDB.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Some applications may benefit from this change of perspective. Most applications seek to retrieve infor-
mation about DB as efficiently and accurately as possible, and they typically are not explicitly concerned
with U − DB. Yet, in situations where privacy is a concern it may be useful to adopt a scheme in which
certain queries are efficient and others are provably inefficient.

Current technologies of encryption (for the data itself) and query restriction (for controlling access to
the data) help ensure confidentiality, but neither solution is appropriate for all applications. In the case of
encryption, the ability to search data records is hindered, while in the case of query restriction, individual
records are vulnerable to insider attacks. The method presented here potentially addresses both of these
concerns.

In the following sections, we first show that implementing NDB is computationally feasible. We do this
by introducing a representational scheme that requires O(ln) negative records to represent a positive database
consisting of n, l-bit records, and then giving an algorithm for finding such a representation efficiently from
any finite DB. This representation is known as the prefix representation. The prefix representation supports
simple membership queries1, insertions, and deletions. We then investigate some of the implications of
the negative scheme for privacy. In particular, we show that the general problem of recovering a positive
database from our negative representation is NP-hard, and we present a randomized algorithm for creating
negative representations that are difficult to reverse. Finally, we review related work, discuss the potential
consequences of our results, and outline areas of future investigation.

2 Representation

In order to create a database NDB that is reasonable in size, we must compress the information contained
in U − DB but retain the ability to answer queries. We introduce one additional symbol to our binary
alphabet, known as a “don’t care,” written as ∗. The entries in NDB will thus be l-length strings over the
alphabet {0, 1, ∗}. The don’t-care symbol has the usual interpretation and will match either a one or a zero
at the bit position where the ∗ appears. Positions in a string that are set either to one or zero are referred
to as “defined positions.” With this new symbol we can potentially represent large subsets of U −DB with
just a few entries.

For example, the set of strings U − DB can be exactly represented by the NDB set depicted shown
below:

DB (U −DB) NDB
001

000 010 0*1
111 011 ⇒ *10

100 10*
101
110

The convention is that a string s is taken to be in DB if and only if s fails to match all the entries in NDB.
This condition is fulfilled only if for every string tj ∈ NDB, s disagrees with tj in at least one defined
position.

2.1 The Prefix Algorithm

In this section we present an algorithm as proof that a negative database NDB can be constructed in
reasonable time and of reasonable size. The prefix algorithm introduced here is deterministic and reversible,
which has consequences for the kinds of inferences that can be made efficiently from NDB. We would like
some inferences to be hard (e.g., inferring the original DB from NDB) and other inferences to be easy,
depending on the application (e.g., finding certain kinds of correlations in DB). However, in this paper,

1Although indexing schemes could be developed to support truly efficient membership queries, our current emphasis is on
demonstrating the dichotomy between tractable and intractable queries.

2

we will focus only on the question of how easy it is to recover the original DB from NDB, a question we
address in Section 3.

Prefix algorithm
Let wi denote an i-bit prefix and Wi a set
of i-length bit patterns.
1. i← 0
2. Set Wi to the empty set
3. Set Wi+1 to every pattern not present in

DB’s wi+1 but with prefix in Wi

4. for each pattern Vp in Wi+1{
5. Create a record using Vp as its prefix

and the remaining positions set to the
don’t care symbol.

6. Add record to NDB.}
7. Increment i by one
8. Set Wi to every pattern in DB’s wi

9. Return to step 3 as long as i < l.

Figure 1: The Prefix algorithm outputs a negative database NDB of size O(l|DB|) representing the strings
in U −DB.

DB U −DB NDB c-keys RNDB
0001 0000 11** 11** 11**
0100 0010 001* 0*1* 0*1*
1000 0011 011* *11* 1110
1011 0101 0000 00*0 *111

0110 0101 *1*1 00*0
0111 1001 1*01 *1*1
1001 1010 **10 0101
1010 1*01
1100 **10
1101 *010
1110
1111

Figure 2: Column 1 gives an example DB, column 2 gives the corresponding U −DB, column 3 gives the
corresponding NDB generated by the prefix algorithm, column 4 gives an example output of RNDB, and
column 5 presents some possible c-keys extracted from NDB (see section 4).

Lemma 2.1.1. The prefix algorithm creates a database NDB that matches exactly those strings not in
DB.

Proof. Step three of the algorithm (Fig. 1) finds every prefix not present in DB that has not already been
inserted in NDB. It then appends every possible string with that prefix to NDB (step 5). If a DB pattern
is not present in window wi+1 and its prefix is not in wi then it must have been inserted in NDB before.
Step two initializes W0 so that the first iteration considers every pattern absent from DB.

Theorem 2.1.1. The negative data set (U −DB) can be represented using O(l|DB|) records.

3

Proof. For every window of size i there are at most |DB| “negative” records created and inserted in NDB
(steps 4–6). The number of windows is at most l (step 9) therefore, the number of negative records is
O(l|DB|).

The NDB produced by the prefix algorithm has some interesting properties. For example, each record
of NDB uniquely covers a subset of U −DB. This nonoverlapping property allows NDB to support more
powerful queries than simple membership. Questions like ”Are there any engineers in DB?” can be answered
by finding all records that match ’engineer’ in the corresponding field of NDB and simply counting whether
these records completely represent the subset of U that contains the engineers. An example DB, U −DB
and the NDB produced by the prefix algorithm is given in Fig. 2.

3 Reversibility

In section 2.1 we presented an algorithm for generating NDB that easily demonstrates the feasibility of a
negative representation. In what follows we turn our attention to the goal of making DB hard to reconstruct.
First we establish that the representation is potentially difficult to reverse, and then we present an algorithm
which indeed produces hard to reverse instances.

Reconstruction of DB from NDB is NP-hard in the following sense2.

Definition 3.0.1. Self Recognition (SR):
INPUT: U −DB represented by a collection NDB of length l bit strings, such that each string may contain
any number of * symbols, and a candidate self set DB.
QUESTION: Does NDB represent the self set DB?

We establish SR is NP-hard. Note that NDB represents an arbitrary set U −DB, and we do not specify
how it was obtained. First we establish the NP-completeness of the following problem.

Definition 3.0.2. Non-empty Self Recognition (NESR):
INPUT: A set U−DB of binary strings represented by a collection NDB of length l strings over the alphabet
{0, 1, ∗}.
QUESTION: Is DB nonempty? That is, is there some string in U = {0, 1}l not matched by NDB?

Theorem 3.0.2. NESR is NP-complete.

Proof. NESR is clearly in NP. (If we guess a string, it is easy to verify that it is not matched by comparing
it against every record in NDB.)
The NP-completeness of NESR is established by transformation from 3-SAT. Start with instance I of 3-
SAT. Let X be the set of variables {xi}, and suppose l is the number of variables. The constructed instance
of NESR will be over length l strings. Each clause {Li, Lj , Lk} in I (Li is a literal, which is either xi or
xi complement) creates a length l string in NDB as follows. All positions other than i, j, or k contain ∗.
Position i contains 0 if Li is xi and contains 1 if Li is x̄i (complemented xi). A similar construction is used
for the other two literals Lj and Lk in this clause.

Claim: There exists a truth assignment satisfying I if and only if there exists a string in U = {0, 1}l not
matched by NDB. In the following, if A is a truth assignment to the variables in X, S(A) is the string in
U obtained by setting the ith bit to 1 if A assigns xi = T and the ith bit to 0 if A assigns xi = F .

We have:
A satisfies I
⇔ for every clause Cq = {Li, Lj , Lk}, at least one
literal is satisfied
⇔ S(A) fails to match at least one of the bits
i, j, k of the qth member of NDB

2For historical reasons we sometimes refer to DB as Self and U −DB as Nonself.

4

(generated from Cq), because uncomplemented literal
Li generates 0 in the ith position and
complemented Li generates 1 in ith position, and
similarly for Lj , Lk)
⇔ S(A) is in DB.

Corollary 3.0.1. NESR is NP-complete even if every record of NDB contains exactly three defined posi-
tions.

Proof. Our transformation always produces such an instance of NESR.

Corollary 3.0.2. Empty Self Recognition (ESR, the complement of NESR, answers YES if and only if
NDB represents the empty set) is NP-hard.

Proof. Trivial Turing transformation from NESR.

Theorem 3.0.3. Self Recognition (SR, defined above) is NP-hard.

Proof. We have established this to be the case even when the candidate self set DB is empty, and even when
every member of NDB contains exactly three defined positions.

4 The Randomize NDB Algorithm

The prefix algorithm presented in Section 2.1 is simple and demonstrates that a compact negative repre-
sentation NDB can be obtained from DB. Although we have demonstrated in Section 3 that the general
problem of reversing a given set NDB to obtain DB is NP-hard, using the simple prefix algorithm to obtain
NDB from DB raises two concerns regarding privacy: (a) The prefix algorithm produces only an easy subset
of possible NDB instances, and (b) If the action of the prefix algorithm (or any algorithm) that produces
NDB from DB could be reproduced by an adversary, then the adversary could easily decide for a given
NDB and candidate DB whether NDB represents U −DB. (The two concerns are, of course, related, for
if an algorithm were capable of producing only one NDB for each DB it is given as input, the image of the
algorithm could not define an NP-hard set of instances of NESR.) In this section, we present a randomized
algorithm (Fig. 3), the Randomize NDB algorithm (RNDB for short), which addresses both of these con-
cerns. The prefix algorithm is modified by introducing a sequence of random choices that enlarges the set of
instances of NDB it can produce, so that the reversibility of the problem instances in the algorithm’s image
defines an NP-hard problem. Further, since the execution of the algorithm is randomized, re-application of
the algorithm by an adversary requires reproducing the algorithm’s random sequence of choices (see example
in Fig. 2).

Section 3 presents a transformation from 3-SAT to NDB, and in what follows we will use the formalisms
interchangeably. In particular, DB and sets of assignments will be used interchangeably, NDB and formula
φ will be used interchangeably, and the output of the algorithms to be presented in this section can be viewed
either as strings in NDB or clauses in φ.

Definition 4.0.3. A c-key is bit pattern not present in DB with no extraneous bits: A c-key defines
a minimal pattern in that the removal of any bit yields a pattern in DB (see figure 2). A c̄-key is the
complement of a c-key.

Definition 4.0.4. A c-clause is a pattern composed of a c̄-key plus at most two additional specified bit
positions.

Theorem 4.0.4. Let DB be a set of assignments and φ a CNF formula. φ is satisfied by every x ∈ DB iff
every clause Cq in φ contains a c̄-key with respect to DB.

5

Proof. Suppose clause Cq of φ contains a c̄-key. Then, by definition 4.0.3, no x ∈ DB contains the comple-
ment pattern of c̄-key. Thus each x ∈ DB contains at least one bit appearing in c̄-key, hence satisfying the
corresponding literal of this bit, thus satisfying Cq.

Now suppose each x ∈ DB satisfies each clause of φ (that is, each x is a satisfying truth assignment for
φ). Suppose to the contrary, that some clause Cq does not contain a c̄-key. Then, the complement pattern
of c̄-key appears in DB, and in particular in at least one x ∈ DB. But then x contains no bit appearing in
c̄-key, thus failing to satisfy each of the corresponding literals in Cq. Hence, we have a contradiction, and it
must be that every clause Cq contains a c̄-key.

Randomize NDB algorithm
Let wi denote an i-bit prefix and Wi a set
of i-length patterns.
1. i← dlog2(l)e
2. Initialize Wi to the set of every pattern

of i bits.
3. Set Wi+1 to every pattern not present in

DB’s wi+1 but with prefix in Wi

4. for each pattern Vp in Wi+1 {
5. Randomly choose 1 ≤ j ≤ l
6. for k = 1 to j do {
7. Vpg ←Pattern Generate(π(DB), Vp)
8. Insert Vpg in NDB.}}
9. Increment i by one
10. Set Wi to every pattern in DB’s wi

11. Return to step 3 as long as i < l.

Figure 3: The Randomize NDB algorithm randomly generates a negative database representing the strings
in U −DB.

Lemma 4.0.2. For every possible c-clause contained in the input pattern Vpe, there is some execution of
Pattern Generate (Fig. 4) (with an appropriate sequence of random choices) that will generate it.

Proof. For every pattern Vpe and every c-key K contained in Vpe there exists a permutation π such that K
occupies the |K| rightmost bit positions of π(Vpe) (step 1). The algorithm proceeds by discarding one by
one, from left to right, every bit it examines for as long as there is a c-key present within the remaining
subpattern (steps 2–6). It follows that since K is a c-key and occupies the |K| rightmost positions of π(Vpe)
that K is the pattern that will be found3. Steps 7–9 of the algorithm generate a pattern containing K and
specifying at most two other arbitrarily chosen positions.

Lemma 4.0.3. The Randomize NDB algorithm, under any sequence of random choices, produces an NDB
that corresponds to an instance of SAT that is satisfied exactly by DB.

Proof. Let nsj be any string in U −DB and let i be the length of the smallest prefix Vp of nsj that is absent
from DB. The algorithm will find this prefix at iteration i (line 3) and create at least one distinct string
with a subpattern p of Vp that is absent from DB (steps 4–8).

3Note that it is not required for the c-key to be contiguous or to occupy the rightmost bits to be found. Its only convenient
to focus on this case for the proof.

6

Pattern Generate(DB, Vpe)
1. Find a random permutation π.
2. for i = 1 to |Vpe| do {
3. Determine whether π(Vpe) without its ith

bit is in π(DB)
4. if not in π(DB){
5. π(Vpe) ← π(Vpe)− ith bit
6. Keep track of the ith bit in a set

indicator vector (SIV) }}
7. Randomly choose 0 ≤ t ≤ 2
8. if t > |SIV | then
9. R ← All bits from SIV

else
10 R ← t randomly selected bits from SIV
11. Create a pattern Vk using π(Vpe),

the bits indicated by R and “don’t care”
symbols in the remaining positions.

12. Return π′(Vk) (π′ is the inverse
permutation of π).

Figure 4: Pattern Generate produces a string over {0, 1, ∗} with at most two extraneous bits, matching Vpe

and not matching any string in DB.

If p is not found in DB then p must be different in at least one bit form every pattern in DB and p̄ must
match every string in DB in at least one position. Our mapping to SAT creates clauses that correspond to
p̄ (see Fig. 4 and lemma 4.0.3)and are thus satisfied by every string in DB and unsatisfied by nsj (for all
nsj ∈ U −DB).

Lemma 4.0.4. The RNDB algorithm can generate any formula of at most n c-clauses containing solely
the n variables present in window wn (when wn is the first window considered) that is satisfied exactly by
DBα, where DBα consists of all the n length prefixes of the strings in DB.

Proof. Let φ be a formula satisfied exactly by DBα and C1 . . . Cn the c-clauses composing φ. Uα −DBα.
For any c-clause Cq in φ, the complement pattern does not satisfy it. By definition, any string containing the
complement of Cq is in Uα −DBα and every string containing the complement pattern of Cq is considered
by the algorithm, and can generate Cq. Note that each call to Pattern Generate (Fig. 4) returns only one
clause. However, up to n ≤ l calls are made on the same Vp, so even if all n clauses in φ must come from
the same Vp, there are sufficient calls to account for them.

Further, no clause not in φ need be generated when wn is considered because every string s in Uα−DBα

that is considered for window wn must contain (since it does not satisfy φ) the complement pattern of at
least one Cq of φ and thus is capable, with an appropriate sequence of random choices, of generating this Cq

and no additional clause (clauses generated repeatedly appear only once in the set of clauses returned).
Note that if there exists one or more formulas of at most n c-clauses containing solely the first n variables

which are satisfied by exactly DBα, RNDB will add no additional clauses after the initial window wn is
considered, because at future iterations there will be no strings which do not appear in wi+1 that have a
prefix in wi.

Theorem 4.0.5. The RNDB algorithm can generate every possible 3-SAT formula such that the number
of clauses is bounded by the number of variables.

7

Proof. Let φ be any 3-SAT formula of l variables and let DB be the set of assignments that exactly satisfy
φ.

For every database DB there exists another database, DBβ , such that DB contains all the l-length
prefixes of strings in DBβ and DBβ contains every possible string of length 2l with those prefixes. The
RNDB algorithm on input DBβ will set its initial window to encompass the first l bit positions, by lemma
4.0.4 the algorithm can generate any formula of at most l c-clauses containing only the first l bit positions
of DBβ . After considering this first window the algorithm will not generate any more clauses, since there
are no additional strings in Uβ − DBβ whose immediate prefix is contained in DBβ . Hence the RNDB
algorithm will output φ by making the appropriate random choices.

Corollary 4.0.3. The image of RNDB defines an NP-complete restriction of NESR. Similarly, the image
of RNDB defines an NP-hard restriction of ESR and SR.

Proof. By Theorem 4.0.5 RNDB can generate an NDB corresponding to (under the transformation of the
proof of Theorem 3.0.2) any instance of 3-SAT in which the number of clauses is bounded by the number of
variables. The set of all such instances of 3-SAT is known to define an NP-complete problem.

4.1 Discussion

Our results establish that, given an NDB as input, it is an NP-hard problem to determine the DB it
represents, or even to determine simply if NDB represents the empty DB. Note that this result does not,
however, address directly the irreversibility of the overall privacy scheme: given a DB as input, we wish to
produce an NDB that cannot be reversed efficiently in time measured as a function of the size of DB. In
particular, the proof of Lemma 4.0.4 identifies instances NDB which RNDB can create from DB which
may be logarithmic in the size of DB. Consequently, a reconstruction algorithm exponential in the size of
the representation NDB could be polynomial in the size of the original DB which the scheme represents.

It remains an open question as to whether a randomizing variant of RNDB can be devised to achieve
this ultimate irreversibility goal. Consider, for example, the variant of RNDB shown in figure 5.

This algorithm is similar to the one presented in figure 3 , the difference (lines 7–10) is that the input
pattern to Pattern Generate is augumented with at most three bit positions outside the scope of the current
prefix window. This enables the algorithm to find any c-clause satisfied by DB in any given run.

The algorithm produces NDBs that are polynomialy related in size to DB, and it remains to explore
whether the set of instances produced indeed defines an NP-hard restriction of NESR. Note that this result
is possible without implying that NP = co-NP, because it may not be possible to decide in deterministic
polynomial time whether an arbitrary input is an instance of the restricted version of NESR defined by
the image of the algorithm. Further, it is important to point out that the NP-hardness of a problem is a
measure of worst case difficulty and practical intractability remains to be ascertained.

Finally we note that both algorithms presented in this section run in time O(l2|DB|2) by observing that
procedure Pattern Generate (Fig. 4) runs in time O(l|DB|) and is called a total of O(l|DB|) times.

5 Related work

There are several areas of research that are potentially relevant to the ideas discussed in this paper. These
include: encryption, privacy-preserving databases, privacy-preserving data-mining, query restriction and
negative data.

An obvious starting point for protecting sensitive data is the large body of work on cryptographic methods,
e.g., as described in [27]. Some researchers have investigated how to combine cryptographic methods with
databases [18, 17, 5], for example, by encrypting each record with its own key. Cryptography, however, is
intended to conceal all information about the encrypted data, and it is therefore not conducive to situations
in which we want to support some queries efficiently but not reveal the entire database.

Cryptosytems founded on NP-complete problems [16] have been explored such as the Merkle-Hellman
cryptosystem [23], which is based on the general knapsack problem. These systems rely on a series of tricks

8

Randomize c-clause algorithm
Let wi denote a i bit prefix and Wi a set
of i length patterns.
1. i← dlog2(l)e
2. Initialize Wi to the set of every pattern

of i bits.
3. Set Wi+1 to every pattern not present in

DB’s wi+1 but with prefix in Wi

4. for each pattern Vp in Wi+1 {
5. Randomly choose 1 ≤ j ≤ l
6. for k = 1 to j do {
7. Randomly select at most three bit

positions a, b, c s.t. i < a, b, c ≤ l
8. for every possible bit assignment Bp

of the selected positions{
9. Vpe ← Vp ·Bp

10. Vpg ←Pattern Generate(π(DB), Vpe)
11. Insert Vpg in NDB.}}}
12. Increment i by one
13. Set Wi to every pattern in DB’s wi

14. Return to step 3 as long as i < l.

Figure 5: The Randomize c-clause algorithm randomly generates a negative database representing the strings
in U −DB and its capable of producing every possible c-clause.

to concel the existence of a “trapdoor” that permits retrieving the hidden information. However, almost
all knapsack cyptosystems have been broken [26], and it has been shown [7, 8] that in general if breaking a
cryptosystem is NP-hard then NP=co-NP, a point addressed in Section 4.

If a scheme based on a NP-hard result, such as the one proposed here, is to be used in a privacy setting it
will be indispensable to study under what situations does it indeed produce hard to reverse instances. In the
case of negative databases there is a large body of literature that addresses this issue due to its isomorphism
with the satisfability (SAT) problem [24, 11].

Of particular relevance, then, are one-way functions [20, 25]—functions that are easy to compute but hard
to reverse and one-way accumulators [4, 9] which are essentially one-way hash functions with the property
of being commutative. One key distinction between these existing methods and the negative database is
that the output of a one-way function is usually compact and the message it encodes typically has a unique
representation. Representing data negatively, as described here, permits a message to be encoded in several
ways and one is chosen randomly (an idea used in probabilistic encryption [21, 6]).

In privacy-preserving data mining, the goal is to protect the confidentiality of individual data while still
supporting certain data-mining operations, for example, the computation of aggregate statistical properties
[3, 2, 1, 12, 14, 29, 28]. In one example of this approach (ref. [3]), relevant statistical distributions are
preserved, but the detals of individual records are obscured. Our method is almost the reverse of this
approach, in that we support efficient membership queries but higher-level queries may be expensive.

Our method is also related to query restriction[22, 10, 12, 13, 28], where the query language is designed
to support only the desired classes of queries. Although query restriction controls access to the data by
outside users, it cannot protect an insider with full privileges from inspecting individual records to retrieve
information.

The term “negative data” sounds similar to our method, but is actually quite different. The deductive
database model (e.g., [19] presents an excellent survey of the foundations of the model) supports in the inten-
sional database (IDB) the negative representation of data. The objectives, mechanisms, and consequences

9

here are quite different from our scheme. In a deductive database, traditional motivations for “negative
data” include reducing space utilization, speeding query processing, and the specification and enforcement
of integrity constraints.

To summarize, the existence of sensitive data requires some method for controlling access to individual
records. The overall goal is that the contents of a database be available for appropriate analysis and
consultation without revealing information inappropriately. Satisfying both requirements usually entails
some compromise such as degrading the detail of the stored information, limiting the power of queries, or
database encryption.

6 Discussion and Conclusions

In this paper we have established the feasibility of a new approach to representing information. Specifically,
we have shown that negative representations are computationally feasible and that they can be difficult to
reverse. However, there are many important questions and issues remaining.

Which classes of queries can be computed efficiently and which cannot? Our initial results address
two extremes—the case of testing membership for a specific, single record and the case of reconstructing
the entire positive database. We would like to understand the computational complexity at points across
the spectrum between these two extremes, as well as understanding what computational properties are
desirable in a privacy-protecting context. A related question involves the costs of database updates under
our representation. How expensive is it to insert or delete entries from the negative database under the
different representations?

Are there other better representations of NDB? Once we understand more completely the computational
properties of our current representations, we may be able to devise other representations whose properties
are more appropriate for some applications.

An important feature of NDB is its distributability in which the NDB is partitioned into disjoint sets,
or fragments. In a distributed NDB, positive membership queries can be processed with no communication
among the database fragments. We would like to study this property in more detail.

Finally, we are interested in inexact representations. The NDB representation is closely related to partial
match detection [15] which has many applications in anomaly detection. We are interested in studying how
those methods might be combined with NDB either for designing an adaptive query mechanism or for
approximate databases.

In conclusion, although we have shown that negative representations of data are computationally feasible
and in some cases difficult to reverse, there are many possible avenues for future work. By tailoring a
negative representation to particular requirements, we are optimistic that we can address at least some of
the problems presented by large collections of sensitive data.

7 Acknowledgments

The authors gratefully acknowledge the support of the National Science Foundation (CCR-0331580, CCR-
0311686, and DBI-0309147), Defense Advanced Research Projects Agency (grant AGR F30602-00-2-0584),
the Intel Corporation, and the Santa Fe Institute. F.E. also thanks Consejo Nacional de Ciencia y Tecnoloǵıa
(México) grant No. 116691/131686 for its financial support.

References

[1] N. R. Adam and J. C. Wortman. Security-control methods for statistical databases. ACM Computing
Surveys, 21(4):515–556, December 1989.

[2] D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy preserving data mining
algorithms. In Symposium on Principles of Database Systems, 2001.

10

[3] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. of the ACM SIGMOD Conference
on Management of Data, pages 439–450. ACM Press, May 2000.

[4] J. Cohen Benaloh and M. de Mare. One-way accumulators: A decentralized alternative to digital
signatures. In Advances in Cryptology—EUROCRYPT ’93, pages 274–285, 1994.

[5] G. R. Blakley and C. Meadows. A database encryption scheme which allows the computation of statistics
using encrypted data. In Proceedings of the IEEE Symposium on Research in Security and Privacy, pages
116–122. IEEE CS Press, 1985.

[6] M. Blum and S. Goldwasser. An efficient probabilistic public-key encryption scheme which hides all
partial information. In George Robert Blakely and David Chaum, editors, Advances in Cryptology:
proceedings of CRYPTO 84, volume 196 of Lecture Notes in Computer Science, pages 289–302, Berlin,
Germany / Heidelberg, Germany / London, UK / etc., 1985. Springer-Verlag.

[7] G. Brassard. A note on the complexity of cryptography. IEEE Transactions on Information Theory,
25(2), 1979.

[8] G. Brassard, S. Fortune, and J. E. Hopcroft. A note on cryptography and NP∩ coNP-P. Technical
Report TR78-338, Cornell University, Computer Science Department, April 1978.

[9] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revocation of
anonymous credentials. In Moti Yung, editor, Advances in Cryptology – CRYPTO ’ 2002, volume 2442
of Lecture Notes in Computer Science, pages 61–76. International Association for Cryptologic Research,
Springer-Verlag, Berlin Germany, 2002.

[10] F. Chin. Security problems on inference control for sum, max, and min queries. J. ACM, 33(3):451–464,
1986.

[11] S. A. Cook and D. G. Mitchell. Finding hard instances of the satisfiability problem: A survey. In
Du, Gu, and Pardalos, editors, Satisfiability Problem: Theory and Applications, volume 35 of Dimacs
Series in Discrete Mathematics and Theoretical Computer Science, pages 1–17. American Mathematical
Society, 1997.

[12] D. Denning. Cryptography and Data Security. AddisonWesley, Reading, MA, 1982.

[13] D.E. Denning and J. Schlorer. Inference controls for statistical databases. Computer, 16(7):69–82, July
1983.

[14] D. Dobkin, A. Jones, and R. Lipton. Secure databases: Protection against user influence. ACM
Transactions on Database Systems, 4(1):97–106, March 1979.

[15] F. Esponda, S. Forrest, and P. Helman. A formal framework for positive and negative detection schemes.
IEEE Transactions on Systems, Man and Cybernetics Part B: Cybernetics, 34(1):357–373, 2004.

[16] S. Even and Y. Yacobi. Cryptography and np-completeness. In Proc. 7th Colloq. Automata, Languages,
and Programming (Lecture Notes in Computer Science), volume 85, pages 195–207. Springer-Verlag,
1980.

[17] J. Feigenbaum, E. Grosse, and J. A. Reeds. Cryptographic protection of membership lists. 9(1):16–20,
1992.

[18] J. Feigenbaum, M. Y. Liberman, and R. N. Wright. Cryptographic protection of databases and software.
In Distributed Computing and Cryptography, pages 161–172. American Mathematical Society, 1991.

[19] H. Gallaire, J. Minker, and J. Nicolas. Logic and databases: a deductive approach. Computing Surveys,
16:1:154–185, 1984.

11

[20] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2000.

[21] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences,
28(2):270–299, 1984. See also preliminary version in 14th STOC, 1982.

[22] N. S. Matloff. Inference control via query restriction vs. data modification: a perspective. In on Database
Security: Status and Prospects, pages 159–166. North-Holland Publishing Co., 1988.

[23] R. C. Merkle and M. E. Hellman. Hiding information and signatures in trapdoor knapsacks. IT-24:525–
530, 1978.

[24] D. Mitchell, B. Selman, and H. Levesque. Problem solving: Hardness and easiness - hard and easy
distributions of SAT problems. In Proceeding of the 10th National Conference on Artificial Intelligence
(AAAI-92), San Jose, California, pages 459–465. AAAI Press, Menlo Park, California, USA, 1992.

[25] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. In Pro-
ceedings of the Twenty First Annual ACM Symposium on Theory of Computing: Seattle, Washington,
May 15–17, 1989, pages 33–43, New York, NY 10036, USA, 1989. ACM Press.

[26] Odlyzko. The rise and fall of knapsack cryptosystems. In PSAM: Proceedings of the 42th Symposium
in Applied Mathematics, American Mathematical Society, 1991.

[27] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C. John Wiley and Sons,
Inc., New York, NY, USA, 1994.

[28] P. Tendick and N. Matloff. A modified random perturbation method for database security. ACM Trans.
Database Syst., 19(1):47–63, 1994.

[29] P. Wayner. Translucent Databases. Flyzone Press, 2002.

12

